首页> 外文OA文献 >Artificial neural networks incorporating cost significant Items towards enhancing estimation for (life-cycle) costing of construction projects
【2h】

Artificial neural networks incorporating cost significant Items towards enhancing estimation for (life-cycle) costing of construction projects

机译:人工神经网络结合了重大成本项目,以加强对建设项目(生命周期)成本的估算

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Industrial application of life-cycle cost analysis (LCCA) is somewhat limited, with techniques deemed overly theoretical, resulting in a reluctance to realise (and pass onto the client) the advantages to be gained from objective (LCCA) comparison of (sub)component material specifications. To address the need for a user-friendly structured approach to facilitate complex processing, the work described here develops a new, accessible framework for LCCA of construction projects; it acknowledges Artificial Neural Networks (ANNs) to compute the whole-cost(s) of construction and uses the concept of cost significant items (CSI) to identify the main cost factors affecting the accuracy of estimation. ANNs is a powerful means to handle non-linear problems and subsequently map between complex input/output data, address uncertainties. A case study documenting 20 building projects was used to test the framework and estimate total running costs accurately. Two methods were used to develop a neural network model; firstly a back-propagation method was adopted (using MATLAB SOFTWARE); and secondly, spread-sheet optimisation was conducted (using Microsoft Excel Solver). The best network was established as consisting of 19 hidden nodes, with the tangent sigmoid used as a transfer function of NNs model for both methods. The results find that in both neural network models, the accuracy of the developed NNs model is 1% (via Excel-solver) and 2% (via back-propagation) respectively.
机译:生命周期成本分析(LCCA)在工业上的应用受到一定程度的限制,其技术被认为过于理论化,导致人们不愿实现(并传递给客户)从(子)组件的客观(LCCA)比较中获得的优势材料规格。为了满足用户友好的结构化方法以促进复杂处理的需求,此处描述的工作为建筑项目的LCCA开发了一个新的,可访问的框架;它认可了人工神经网络(ANN)来计算建筑的整体成本,并使用成本重要项目(CSI)的概念来识别影响估计准确性的主要成本因素。人工神经网络是处理非线性问题并随后在复杂的输入/输出数据之间映射,解决不确定性的有力手段。记录20个建筑项目的案例研究用于测试框架并准确估算总运营成本。有两种方法可以用来建立神经网络模型。首先采用反向传播方法(使用MATLAB软件);其次,进行了电子表格优化(使用Microsoft Excel Solver)。建立的最佳网络由19个隐藏节点组成,两种方法均使用切线S形作为NNs模型的传递函数。结果发现,在两种神经网络模型中,所开发的NNs模型的准确性分别为1%(通过Excel-solver)和2%(通过反向传播)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号